To Generate or Not? Safety-Driven Unlearned Diffusion Models Are
Still Easy To Generate Unsafe Images ... For Now
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% For diffusion models (DMs),
safety-driven unlearning
methods face doubts about
their effectiveness.
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adversarial text prompt attack,
UnlearnDiffAtk, is proposed.
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Limitations of Existing Works

% Existing attack
methods rely on
auxiliary models to
provide groundtruth
directions.

- Our proposed
afttack leverages the
inherent classification
capabilities of DMs
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Analyses
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How to create an adversarial prompte
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Remove absolute magnitudes in Equation (2):
1

25 exXp {Es.ellle — eo(xt|ci) [|3] — Ee.e[lle — ea(x¢[c;)[2]}

[1] Li AC, Prabhudesai M, Duggal S, et al. Your diffusion model is secretly a zero-shot classifier, ICCV 2023.



Analyses

minimize . exp {Ex,c[le — o= (xegt.c|e') 3] — Ee,c[lle — cor (xig.cles)[3]}
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Utilizing Jensen’s inequality for convex functions, the individual
objective function (for a specific j) in Equation (3) is upper
bounded by:

1 1
5 exp {QEt,e[He — €0+ (tht,t|C,)”g]} T 5 CXp {—QEt,e[”e — €ox (tht,t|cj)”g]}
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~
independent of attack variable ¢’

Finally, exclude the terms that are unrelated to ¢’ and we
can get Equation (1).



Robustness evaluation of unlearned DMs in concept unlearning

ASR: attack success rate
‘No attack’: use original prompts from |12P
‘P4D’ & UnlearnDiff: optimization-based attack methods

‘Atk. Time per prompt’': average computation time for generating one attack per prompt

I2P: | Nudity | Violence | Illegal Activity | Atk. Time
Total Prompts #: | 142 | 756 | 727 | per Prompt
mins
Unlearned DMs: | ESD FMN  SLD | ESD  FMN  SLD | ESD  FMN  sp |
Attacks: No Attack 20.42% 88.03% 33.10% 27.12% 43.39% 23.10% 30.99% 32.83% 7.85% -
(ASR % ) P4D 69.71% 97.89% 77.46% 80.56% 85.85% 59.92% 85.83% 88.03% 48.01% 34.70
¢ UnlearnDiff 76.05% 97.89% 82.39% 80.82% 84.13% 60.71% 85.01% 86.66% 48.28% 26.29

« both UnlearnDiffAtk and P4D can effectively circumvent various types of unlearned DMs

« in most cases, UnlearnDiff outperforms P4D although the ASR gap is not significant in concept
learning.

- the computational cost of UnlearnDiff is much lower than P4D, resulting in approximately 23.5%
less computation cost per attack instance generation.

« inferms of ASR, ESD demonstrates better robustness than other unlearned DMs



Robustness evaluation of unlearned DMs in concept unlearning
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Robustness evaluation of unlearned DMs in style unlearning

Top-1 ASR & Top-3 ASR:
‘No attack’:

‘P4D’ & UnlearnDiff:
‘Atk. Time per prompt’:

attack success rate (the top-1 prediction or within the top-3 predictions)

use original prompts
optimization-based attack methods

average computation fime for generating one attack per prompt

Artistic Style: 1 Van Gogh | Atk. Time
Unlearned DMs: ESD FMN AC UCE pelgnl:irgslpt
Top-1 | Top-3 | Top-1  Top-3 | Top-1  Top-3 | Top-1 Top-3
Attacks: No Attack 200% 16.00% | 10.00% 32.00% | 12.00% 52.00% | 62.00% 78.00% -
(ASR o/') P4D 30.00% 78.00% | 54.00% 90.00% | 68.00% 94.00% | 98.00% 100.00 % 50.79
? UnlearnDiff | 32.00% 76.00% | 56.00% 90.00% | 77.00% 92.00% | 94.00% 100.00% 38.87

« 50 prompts for image generation with the Van Gogh style.

«  Among the unlearned DMs, ESD exhibits the highest unlearning
robustness when considering Top-1 ASR.

« Top-3 ASR still maintains a performance level exceeding 80% when

employing UnlearnDiff, and is sufficient to indicate the generation of

images with the Van Gogh's painting style,



Robustness evaluation of unlearned DMs in style unlearning
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Robustness evaluation of unlearned DMs in object unlearning

ASR: attack success rate

‘No attack’:
‘P4D’ & UnlearnDiff:

use original prompts
optimization-based attack methods

‘Atk. Time per prompt’': average computation time for generating one attack per prompt

Object Classes: | Church Parachute Tench Garbage Truck Atkl; Timet
per Promp
Unlearned DMs: | ESD FMN | ESD FMN | ESD FMN | ESD FMN (mins)
Attacks: No Attack 14% 52% | 4%  46% | 2%  42% | 2% 40% -
(ASR % ') P4D 56% 98% | 48% 100% | 28% 96% | 20%  98% 43.65
? UnlearnDiff | 60% 96% | 54% 100% | 36% 100% | 24%  98% 31.32

« 50 prompts for for each object class.

« UnlearnDiff consistently achieves a higher ASR than P4D across various
unlearning objects and victim models while requiring less computational

resources.

« ESD demonstrates better robustness against prompt perturbations than

FMN in the context of object unlearning.



Robustness evaluation of unlearned DMs in object unlearning

Object Classes: ‘ ‘ Church Parachute Tench Garbage Truck ‘
P P> Ps3 Py
Prompts: Church surrounded Parachute in Tench in Garbage truck
by autumn foliage. a desert landscape. a fish market. during winter.
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